فرمول موفقیت رو یاد بگیر

اطلاعیه فروشگاه

اطلاعیه فروشگاه : در هنگام خرید حتما روی دکمه تکمیل خرید در صفحه بانک کلیک کنید تا پرداخت شما تکمیل شود مراحل پرداخت را تا آخر و دریافت کدپیگیری سفارش انجام دهید ؛ در صورتی که نتوانستید پرداخت الکترونیکی را انجام دهید چند دقیقه صبر کنید و مجددا اقدام کنید و یا از طریق مرورگر دیگری وارد سایت شوید یا اینکه بانک عامل را تغییر دهید.پس از پرداخت موفق لینک دانلود به طور خودکار در اختیار شما قرار میگیرد و به ایمیل شما نیز ارسال میشود. سایت فوق با کامل ترین و بروزترین طرح های توجیهی پاسخگوی نیازهای شما عزیزان است، امیداست رضایت کامل شما تبلیغ ما باشد.

عدد نپر

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 4

 

عدد نپر:

عدد اي (e) يکي از ثابت‌هاي رياضي و پايه لگاريتم طبيعي است. عدد e تا ۲۹ رقم پس از مميز چنين است:

E = 2,71828 713502874235365904518284

پايه لگاريتم طبيعي (~ 2.71828)، اولين بار توسط لئونارد اويلر (Leonhard Euler 1707-83) يکي از باهوشترين رياضيدانان تاريخ رياضيات مورد استفاده قرار گرفت. در يکي از دست خطهاي اويلر که ظاهرا" بين سالهاي 1727 و 1728 تهيه شده است با تيتر

Meditation on experiments made recently on the firing of cannon اويلر از عدي بنام e صحبت مي کند. هر چند او رسما" اين نماد را در سال 1736 در رساله اي بنام Euler's Mechanica معرفي ميکند.

در واقع بايد اعتراف کرد که اويلر کاشف يا مخترع عدد e نبوده است بلکه سالها قبل فردي بنام جان نپر (John Napier 1550-1617) در اسکاتلند هنگامي که روي لگاريتم بررسي مي کرده است بحث مربوط به پايه طبيعي لگاريتم را به ميان کشيده است. فراموش نکنيد که شواهد نشان ميدهد حتي در قرن هشتم ميلادي هندي ها با محاسبات مربوط به لگاريتم آشنايي داشته اند.

در اينکه چرا عدد ~ 2.71828 بصورت e توسط اويلر نمايش داده شده است صحبت هاي بسياري است. برخي e را اختصار exponential مي دانند، برخي آنرا ابتداي اسم اويلر (Euler) مي دانند و برخي نيز ميگويند چون حروف a,b,c و d در رياضيات تا آن زمان به کرات استفاده شده بود، اولر از e براي نمايش اين عدد استفاده کرد. هر دليلي داشت به هر حال امروزه اغلب اين عدد را با نام Euler مي شناسند.

کاربرد:

اويلر هنگامي که روي برخي مسائل مالي در زمينه بهره مرکب در حال کار بود به عدد e علاقه پيدا کرد. در واقع او دريافت که در مباحث بهره مرکب، حد بهره به سمت عددي متناسب (يا مساوي در شرايط خاص) با عدد e ميل ميکند. بعنوان مثال اگر شما 1 ميليون تومان با نرخ بهره 100 درصد در سال بصورت مرکب و مداوم سرمايه گذاري کنيد در پايان سال به رقمي حدود 2.71828 ميلون تومان خواهيد رسيد.

در واقع در رابطه بهره مرکب داريم :

که در آن P مقدار نهايي سرمايه و بهره است، C مقدار اوليه سرمايه گذاري شده،r نرخ بهره، n تعداد دفعاتي است که در سال به سرمايه بهره تعلق مي گيرد و t تعداد سالهايي است که سرمايه گذاري مي شود.

در اين رابطه اگر n به سمت بي نهايت ميل کند - حالت بهره مرکب - فرمول را مي توان بصورت زير ساده کرد :

اويلر همچنين براي محاسبه عدد e سري زير را پيشنهاد داد :

لازم است ذکر شود که اويلر علاقه زيادي به استفاده از نمادهاي رياضي داشت و رياضيات امروز علاوه بر عدد e در ارتباط با مواردي مانند i در بحث اعداد مختلط، f در بحث توابع و بسياري ديگر نمادها مديون بدعت هاي اويلر است.

مي خواهيم ثابت کنيم که e=(1+1/n)n گنگ است:

طبق بسط دو جمله اي نيوتن:

e=(1+1/n)n=1+1/1!+1/2!+1/3!+…+1/n!+1/(n+1)!+…

n!e=[(n!)+(n!/1!)+(n!/2!)+(n!/3!)+…+(n!/n!)]+(n!/(n+1)!)+…

که عبارت داخل کروشه يک عدد صحيح است که آن را qn مي ناميم.حال فرض مي کنيم که e گويا و برابر باa/b باشد داريم:

n!a=bqn+b[(n!/(n+1)!)+(n!/(n+2)!)+…]

عدد صحيح و مثبت rn را بدين صورت داريم:

Rn=n!a-bqn=b[(1/(n+1))+(1/(n+1)(n+2))+(1/(n+1)(n+2)(n+3))+…]

Rn=b/(n+1)+b[(1/(n+1)(n+2))+(1/(n+1)(n+2)(n+3))+…]

و اگر در عبارت کروشه از مخرج فقط دو عامل را نگاه داريم:

Rn

Rn

=>rn rn<2b/(n+1)

پس به ازاي n>2b-1 ، rn کوچکتر از 1 مي شود و اين با فرض متناقض است پس حکم گنگ بودن e ثابت است.


اشتراک بگذارید:


پرداخت اینترنتی - دانلود سریع - اطمینان از خرید

پرداخت هزینه و دریافت فایل

مبلغ قابل پرداخت 10,700 تومان
کدتخفیف:

درصورتیکه برای خرید اینترنتی نیاز به راهنمایی دارید اینجا کلیک کنید


فایل هایی که پس از پرداخت می توانید دانلود کنید

نام فایلحجم فایل
file197_1483213_7843.zip18.3k